Logarithmagic!!!!
Logarithm is just a really fancy word for an exponent in reverse:
\[\log_a(b)\] is like asking: \[a^\text{what} = b\]
-
\(\log_2(8)\) is the like as asking \(2^\text{what} = 8\)
- the answer is \(3\), since \(2^3 =8\)
- so \(\log_2(8) = 3\)
-
\(\log_5(25)\) is the like as asking \(5^\text{what} = 25\)
- the answer is \(2\), since \(5^2 =25\)
- so \(\log_5(25)= 2\)
-
\(\log_{1/3}\left(\frac{1}{81}\right)\) is the like as asking \(\left(\frac13\right)^\text{what} = \frac{1}{81}\)
- the answer is \(4\), since \(\left(\frac13\right)^4 = \frac{1}{81}\)
- so \(\log_{1/3}\left(\frac{1}{81}\right) = 4\)
-
\(\log_{537.21}\left(1\right)\) is the like as asking \(\left(537.21\right)^\text{what} = 1\)
- the answer is \(0\), since \(\left(537.21\right)^0 = 1\)
- so \(\log_{537.21}\left(1\right) = 0\)
Problems
- \(\log_2(8)\)
- \(\log_2(16)\)
- \(\log_2\left(\frac12\right)\)
- \(\log_3(9)\)
- \(\log_3(27)\)
- \(\log_3(81)\)
- \(\log_4(64)\)
- \(\log_4(16)\)
- \(\log_4(32)\)
- \(\log_7(49)\)
- \(\log_{49}(7)\)
- \(\log_7\left(\frac{1}{49}\right)\)
- \(\log_{1/49}\left(7\right)\)
- \(\log_{1/49}\left(\frac17\right)\)
- \(\log_5(25)\)
- \(\log_5(1)\)
- \(\log_5\left(\frac{1}{25}\right)\)
- \(\log_6(36)\)
- \(\log_6(216)\)
- \(\log_{216}(6)\)
- \(\log_{1/3}(9)\)
- \(\log_3(-9)\)
- \(\log_{1/3}(-9)\)
- \(\log_{10}(10,000)\)
- \(\log_{1/2}\left(\frac14\right)\)
- \(\log_{\frac{3}{2}}\left(\frac{4}{9}\right)\)
- \(\log_{10}(0.00000000000001)\)
- \(\log_{4}(-64)\)
- \(\log_{4}\left(1/16\right)\)
- \(\log_{4}\left(128\right)\)
- \(\log_{\frac{1}{16}}(2)\)
- \(\log_{2025}(1)\)
- \(\log_{2025}(45)\)
- \(\log_{5\sqrt[3]{5}}(25)\)
- \(\log_{8192}(2)\)
- \(\log_{8192}(4)\)
- \(\log_5(-25)\)
- \(\log_7(0)\)
- \(\log_7(1)\)
- \(\log_9(243)\)
- \(\log_{125}(0.0016)\)
- \(\log_{512}(1/2)\)
- \(\log_7(50)\)
- \(\log_{12}(100)\)
- \(\log_{3\sqrt3}\left(729\right)\)
- \(\log_{4\sqrt[3]{2}}(32)\)
- \(\log_{2}(3000)\)
- \(\log_{a+b}\left(a^2+2ab+b^2\right)\)
- \(\log_{a-b}\left(a^2-2ab+b^2\right)\)
- \(\log_{a+b}\left(a^3+3a^2b+3ab^2 + b^3\right)\)
- \(\log_{a+b}\left(a^6 \!+\! 6 a^5 b \!+\! 15 a^4 b^2 + 20 a^3 b^3 \!+\! 15 a^2 b^4 \!+\! 6 a b^5 \!+\! b^6 \right)\)
- \(\displaystyle \log_{a^3b^4}\left(\frac{b^{-12}}{(\sqrt[4]{a^3})^{12}}\right)\)
- \(\displaystyle \log_{\frac{7}{\left(qr^3\right)^9}}\left(\frac{q^{18}r^{24}}{49}\right)\)
- \(\displaystyle \log_{\frac{x^2\sqrt{b}}{y^3} }\left(\left( \frac{y^2}{x^3} \right)^4\cdot\frac{y^{10}}{b^3} \right)\)